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1. INTRODUCTION 

It has been nearly twenty years since Minsky and 

Papert (1969) conclusively demonstrated that the 
simple two-layer perceptron is incapable of usefully 
representing or approximating functions outside a 
very narrow and special class. Although Minsky and 

Papert left open the possibility that multilayer net- 
works might be capable of better performance, it has 
only been in the last several years that researchers 
have begun to explore the ability of multilayer feed- 
forward networks to approximate general mappings 
from one finite dimensional space to another. Re- 
cently, this research has virtually exploded with im- 
pressive successes across a wide variety of applica- 
tions. The scope of these applications is too broad 
to mention useful specifics here; the interested reader 
is referred to the proceedings of recent IEEE Con- 
ferences on Neural Networks (1987, 1988) for a sam- 
pling of examples. 

The apparent ability of sufficiently elaborate feed- 
forward networks to approximate quite well nearly 
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any function encountered in applications leads one 
to wonder about the ultimate capabilities of such 
networks. Are the successes observed to date re- 
flective of some deep and fundamental approxima- 
tion capability, or are they merely flukes, resulting 
from selective reporting and a fortuitous choice of 
problems? Are multilayer feedforward networks in 
fact inherently limited to approximating only some 
fairly special class of functions. albeit a class some- 
what larger than the lowly perceptron‘? The purpose 
of this paper is to address these issues. We show that 
multilayer feedforward networks with as few as one 
hidden layer are indeed capable of universal ap- 
proximation in a very precise and satisfactory sense. 

Advocates of the virtues of multilayer feedfor- 
ward networks (e.g., Hecht-Nielsen, 1987) often cite 
Kolmogorov’s (1957) superposition theorem or its 
more recent improvements (e.g.. Lorentz, 1976) in 
support of their capabilities. However, these results 
require a different unknown transformation (g in 
Lorentz’s notation) for each continuous function to 
be represented, while specifying an exact upper limit 
to the number of intermediate units needed for the 
representation. In contrast, quite specific squashing 
functions (e.g., logistic, hyperbolic tangent) are used 
in practice, with necessarily little regard for the func- 
tion being approximated and with the number of 
hidden units increased ad libitum until some desired 
level of approximation accuracy is reached. Al- 
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though Kolmogorov’s result provides a theoretically 
important possibility theorem, it does not and cannot 
explain the successes achieved in applications. 

In previous work, le Cun (1987) and Lapedes and 
Farber (1988) have shown that adequate approxi- 
mations to an unknown function using monotone 
squashing functions can be achieved using two hid- 
den layers. Irie and Miyake (1988) have given a rep- 
resentation result (perfect approximation) using one 
hidden layer, but with a continuum of hidden units. 
Unfortunately, this sort of result has little practical 
usefulness, despite its great theoretical utility. 

Recently, however, Gallant and White (1988) 
showed that a particular single hidden layer feed- 
forward network using the monotone “cosine 
squasher” is capable of embedding as a special case 
a Fourier network which yields a Fourier series ap- 
proximation to a given function as its output. Such 
networks thus possess all the approximation prop- 
erties of Fourier series representations. In particular. 
they are capable of approximation to any desired 
degree of accuracy of any square integrable function 
on a compact set using a finite number of hidden 
units. Still, Gallant and White’s results do not justify 
arbitrary multilayer feedforward networks as uni- 
versal approximators, but only a particular class of 
single hidden layer networks in a particular (but im- 
portant) sense. Further related results using the lo- 
gistic squashing function (and a great deal of useful 
background) are given by Hecht-Nielsen (1989). 

The present paper makes use of the Stone-Weier- 
strass Theorem and the cosine squasher of Gallant 
and White to establish that standard multilayer feed- 
forward network architectures using arbitrary 
squashing functions can approximate virtually any 
function of interest to any desired degree of accu- 
racy, provided sufficiently many hidden units are 
available. These results establish multilayer feedfor- 
ward networks as a class of universal approximators. 
As such, failures in applications can be attributed to 
inadequate learning, inadequate numbers of hidden 
units, or the presence of a stochastic rather than a 
deterministic relation between input and target. Our 
results do not address the issue of how many units 
are needed to attain a given degree of approxima- 
tion. 

The plan of this paper is as follows. In section 2 
we present our main results. Section 3 contains a 
discussion of our results, directions for further re- 
search and some concluding remarks. Mathematical 
proofs are given in an appendix. 

2. MAIN RESULTS 

We begin with definitions and notation which enable 
us to speak precisely about the class of multi-layer 
feedforward networks under consideration. 

Definition 2.1 

For any I E N = (1, 2, . . . }, A; is the set of all 
affine functions from R’ to R, that is, the set of all 
functions of the form A(x) = w-x c b where w and 
x are vectors in R’, “.” denotes the usual dot product 
of vectors, and b E R is a scalar. r, ,._! 

In the present context, x corresponds to network 
input, w corresponds to network weights from input 
to the intermediate layer, and b corresponds to a 
bias. 

Definition 2.2 

For any (Borel) measurable function G(.) mapping 
R to R and r E N let Z’(G) be the class of functions 

{.f: R’ -+ R : f(x) 

= 2 ,&G(A,(x)), x E R’. /!I, E R. A, E A’. 

4 = I, 2. . ). 0 

A leading case occurs when G is a “squashing 
function,” in which case C’(G) is the familiar class 
of output functions for single hidden layer feedfor- 
ward networks with squashing at the hidden layer 
and no squashing at the output layer. The scaIars 8, 
correspond to network weights from hidden to out- 
put layers. 

For convenience, we formally define what we mean 
by a squashing function. 

Deftion 2.3 

A function ‘P: R + [0, I] is a squashing function if it 
is non-decreasing, limn_ q(n) = 1, and lim,_, 
u(n) = 0. n 

Because squashing functions have at most count- 
ably many discontinuities, they are measurable. Use- 
ful examples of squashing functions are the thres- 
hold functions, Y(n) = lljpO1 (where l,., denotes 
the indicator function), the ramp function, *(;l) = 

~I[O~-l~lj + 111>1}> and the cosine squasher of Gallant 
and White (1988), q(J) = (1 -+ cos[J. + 3~121) 

(li2) l{ -n/Zci~ni2] + l{l>nO). 
We define a class of XII network output functions 

(Maxwell, Giles, Lee, & Chen, 1986; Williams, 19%) 
in the following way. 

De5Men 2.4 

For any measurable function G(d) mapping R to R 
and r E N, let ZIP(G) be the class of functions 

{f: R’--, R:f(x) = 

,$ P, . k$ G(A),(x)), X E R’, Bj E R, Ai, E A’+ 11, E N, 

y = 1, 2, .). I‘! 
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Our general results will be proved first for CII net- 
works and subsequently extended to Z networks. The 
latter are the special case of CII networks for which 
f, = 1 for all j. 

Notation for the classes of function that we con- 
sider approximating is given by the next definition. 

Definition 2.5 

Let C’ be the set of continuous functions from R’ to 
R, and let M’ be the set of all Bore1 measurable 
functions from R’ to R. We denote the Bore1 a-field 
of R’ as B’. q 

The classes Z;‘(G) and XII’(G) belong to M’ for 
any Bore1 measurable G. When G is continuous, 
X’(G) and ZIIr(G) belong to c’. The class C’ is a 
subset of M’, which in fact contains virtually all func- 
tions relevant in applications. Functions that are not 
Bore1 measurable exist (e.g., Billingsley, 1979, pp. 
36-37) but they are pathological. Our first results 
concern approximating functions in C’; we then ex- 
tend these results to approximating functions in M’. 

Closeness of functions f and g belonging to C’ or 
M’ is measured by a metric, p. Closeness of one class 
of functions to another class is described by the con- 
cept of denseness. 

Definition 2.6 

A subset S of a metric space (X, p) is ,V - dense in 
a subset T if for every c > 0 and for every t E T 

there is an s E S such that p(s, t) < c. 0 
In other words, an element of S can approximate 

an element of T to any desired degree of accuracy. 
In our theorems below, T and X correspond to C’ 
or M’, S corresponds to Z’(G) or XI’(G) for specific 
choices of G, and p is chosen appropriately. 

Our first result is stated in terms of the following 
metrics on C’. 

Definition 2.7 

A subset S of C’ is said to be uniformly dense on 
compacta in C’ if for every compact subset K CR’ S 

is p,-dense in C’, where for f, g E C’ p,(f,g) = 
~up,~~~Jf(~) - &)I. A sequence of functions {f,l} 
converges to a function f uniformly on compacta if 
for all compact K C HP’ ~~(f,!,f) + 0 as n + x. cl 

We may now state our first main result. 

Theorem 2.1 

Let G be any continuous nonconstant function from 
R to BP. Then XII’(G) is uniformly dense on compacta 
in C’. c1 

In other words, XI feedforward networks are ca- 
pable of arbitrarily accurate approximation to any 

real-valued continuous function over a compact set. 
The compact set requirement holds whenever the 
possible values of the inputs x are bounded (X E K). 
An interesting feature of this result is that the acti- 
vation function G may be any continuous noncon- 
stant function. It is not required to be a squashing 
function, although this is certainly allowed. Another 
interesting type of activation function allowed by this 
result behaves like a squashing function for values 
of A(x) below a given level, but then decreases con- 
tinuously to zero as A(x) increases beyond this level. 
Our subsequent results all follow from Theorem 2.1. 

In order to interpret the metrics relevant to our 
subsequent results we introduce the following no- 
tion. 

Definition 2.8 

Let /l be a probability measure on (R’. B’). If f and 
g belong to M’, we say the are p-equivalent if /1(x E 
R’:f(x) = g(x)} = 1 0 

Taking ,U to be a probability measure (i.e., 
p(K) = 1) is a matter of convenience; our results 
actually hold for arbitrary finite measures. The con- 
text need not be probabilistic. Regardless, the mea- 
sure ,u describes the relative frequency of occurrence 
of input “patterns” X. The measure p is the “input 
space environment” in the terminology of White 
(1988a). Functions that are p-equivalent differ only 
on a set of patterns occurring with probability (mea- 
sure) zero, and we are concerned only with distin- 
guishing between classes of equivalent functions. 

The metric on classes of /c-equivalent functions 
relevant for our main results is given by the next 
definition. 

Definition 2.9 

Given a probability measure 11 on (R’JY) define the 
metric p,, from M’ x M’ to R + by p,,(f,g) = ig 
{E > 0: ,D{x: I.f(x) - g(x)1 > c} < E). 

Two functions are close in this metric if and only 
if there is only a small probability that they differ 
significantly. In the extreme case that .f and g are 
/c-equivalent pl,(f,g) equals zero. 

There are many equivalent ways to describe what 
it means for ~,~(f~, .f) to converge to zero. 

Lemma 2.1. All of the following are equivalent. 

(b) For every E > 0 ~{x: if,!(~) - .f’(x)/ > c} -+ 0. 

(c) S min{lS&) - S(x)/, 11 /l(dx) + 0. cl 

From (b) we see that p,,-convergence is equivalent 
to convergence in probability (or measure). In (b) 
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the Euclidean metric can be replaced by any metric 
on R generating the Euclidean topology, and the 
integrand in (c) by any bounded metric on R gen- 
erating the Euclidean topology. For example d 
(a,b) = ]a - bjl(1 + la - bj) is a bounded metric 
generating the Euclidean topology, and (c) is true 
if and only if J d(f&x), f(x))p(dx) -+ 0. 

The following lemma relates uniform convergence 
on compacta to p,,-convergence. 

Lemma 2.2. If {f,} is a sequence of functions in M’ 
that converges uniformly on compacta to the function 

f then P,K f) -+ 0 n 
We now state our first result on approximating 

functions in M’. It follows from Theorem 2.1 and 
Lemma 2.2. 

Theorem 2.2 

For every continuous nonconstant function G, every 
r, and every probability measure ,u on (R’, B’) , %I’( G) 
is p,-dense in M’ i? 

In other words, single hidden layer XI feedfor- 
ward networks can approximate any measurable 
function arbitrarily well, regardless of the continuous 
nonconstant function G used, regardless of the di- 
mension of the input space r, and regardless of the 
input space environment p. In this precise and sat- 
isfying sense, XII networks are universal approxi- 
mators. 

The continuity requirement on G rules out the 
threshold function q’(n) = I++ However, for 
squashing functions continuity is not necessary. 

Theorem 2.3 

For every squashing function 9, every r, and every 
probability measure ~1 or (R’JY), XII’(T) is uni- 
formly dense on compacta in C’ and p,-dense in 
M’. n 

Because of their simpler structure, it is important 
to know that the very simptest XII networks, the C 
networks, have similar approximation capabilities. 

Theorem 2.4 

For every squashing function V, every r, and every 
probability measure p on (R’JY), X:‘(‘P) is uniformly 
dense on compacta in c’ and p,-dense in M’. q 

In other words, standard feedforward networks 
with only a single hidden layer can approximate any 
continuous function uniformly on any compact set 
and any measurable function arbitrarily well in the 
p,, metric, regardless of the squashing function ZI’ 
(continuous or not), regardless of the dimension of 
the input space I, and regardless of the input space 

environment ,u. Thus, 2 networks are also universal 
approximators. 

Theorem 2.4 implies Theorem 2.3 and, for squash- 
ing functions. Theorem 2.3 implies Theorem 2.2. 
Stating our results in the given order reflects the 
natural order of their proofs. Further. deriving Theo- 
rem 2.3 as a consequence of Theorem 2.4 obscures 
its simplicity. 

The structure of the proof of Theorem 2.3 (re- 
spectively 2.4) reveals that a similar result holds if 
v’ is not restricted to be a squashing function, but is 
any measurable function such that ‘cII’(Vr) (respec- 
tively C’(U)) uniformly approximates some squash- 
ing function on compacta. Stinchcombe and White 
(1989) give a result analogous to Theorem 2.4 for 
nonsigmoid hidden layer activation functions. 

Subsequent to the first appearance of our results 
(Hornik, Stinchcombe, & White. 1988). Cybenko 
(1988) independently obtained the uniform approx- 
imation result for functions in C’ contained in Thco- 
rem 2.4. Cybenko’s very different approach makes 
elegant use of the Hahn-Banach theorem. 

A variety of corollaries follows easily from the 
results above. In all the results to follow, V is a 
squashing function. 

Corollary 2.1 

For every function g in M’ there is a compact subset 
K of R’ and an f E C’(q) such that for any F: > 0 
wehavep(K)<l -~andforeveryxEKwehave 
if(x) - g(x)\ < E, regardless of 9, r, or ~1. C3 

In other words, there is a single hidden layer feed- 
forward network that approximates any measurable 
function to any desired degree of accuracy on some 
compact set K of input patterns that to the same 
degree of accuracy has measure (probability of oc- 
currence) 1. Note the difference between Corollary 
2.1 and Theorem 2.1. In Theorem 2.1 g is continuous 
and K is an arbitrary compact set; in Corollary 2.1 
g is measurable and K must be specially chosen. 

Our next result pertains to approximation in L,)- 
spaces. We recall the following definition. 

Definition 2.10 

L,(R’, p) (or simply Lp) is the set of f E M’ such 

that I If(x)lP p(h) < M. The L, norm is defined by 
Ilfl\, = [Jlf(x)lP p(dx)]i’p. The associated metric “;; 
L, is defined by p,(f, g) = l1.f -- gj,. 

The L, approximation result is the following. 

corounry 2.2 

If there is a compact subset K of R’ such that 
p(K) = 1 then B’(Y) is p,-dense in L,(R’, p) for every 
p E [l, w), regardless of V, r, or P. cl 
We also immediately obtain the following result. 
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Corollary 2.3 

If ,D is a probability measure on ]O,llr then Z,‘(P) is 
p,-dense in L,,([O, l]‘, /l) for every p E [ 1, cc), re- 
gardless of \v, r, or P. El 

Corollary 2.4 

If p puts mass 1 on a finite set of points, then for 
every g E M’ and for every E > 0 there is an f E 
X’(P) such that ,~{x:)f(x) - g(x)] < e} = 1. 0 

Corollary 2.5 

For every Boolean function g and every E > 0 there 
is an f in Zr(Y) such that max,,~O,,Y)g(x) - ,f(x)l 
< E. q 

In fact, exact representation of functions with fi- 
nite support is possible with a single hidden layer. 

Theorem 2.5 

Let {x,, . , x,} be a set of distinct points in R’ and 
let g : Rr -+ W be an arbitrary function. If q achieves 
0 and 1, then there is a function f E Cr(V) with n 
hidden units such that .f(~,) = g(Xi), i E {I, . . , 

nl. 0 
With some tedious modifications the proof of this 

theorem goes through when 1I’ is an arbitrary squash- 
ing function. 

The foregoing results pertain to single output net- 
works. Analogous results are valid for multi-output 
networks approximating continuous or measurable 
functions from R’ to R”, s E N, denoted C’,’ and Mr.“. 
respectively. We extend C’ and CIIr to C’,” and XIr.~ 
respectively be re-interpreting j?, as an s x 1 vector 
in Definitions 2.2 and 2.4. The function g:Rr + R‘ 
has elements g,, i = 1, . . . , s. We have the following 
result. 

Corollary 2.6 

Theorems 2.3, 2.4 and Corollaries 2.1-2.5 remain 
valid for classes Ul’,‘(~) and/or IZ’~“(‘3!) approxi- 
mating functions in Cc” and Mr." with pIi replaced with 

P;,, ~;,(f, s) = Z=l ~,(f,, g,) and with pP replaced 
with its appropriate multivariate generalization. 0 

Thus, multi-output multilayer feedforward net- 
works are universal approximators of vector-valued 
functions. 

All of the foregoing results are for networks with 
a single hidden layer. Our final result describes the 
approximation capabilities of multi-output multi- 
layer networks with multiple hidden layers. For sim- 
plicity, we explicitly consider the case of multilayer 
IX nets only. We denote the class of output functions 
for multilayer feedforward nets with I layers (not 
counting the input layer, but counting the output 

layer) mapping W’ to I? using squashing functions q 
as Z:;,S(,W). (Our previous results thus concerned the 
case I = 2.) The activation rules for the elements of 
such a network are 

a ki = Gk(A,(ak_,)) i = 1. , yi: k = 1, . . . I, 

where uk is a qk x 1 vector with elements ah,, a,, = 
x by convention, G,, . . . , Cl-, = 9, G, is the 
identity map, q,, = r, and q, = s. We have the fol- 
lowing result. 

Corollary 2.7 

Theorem 2.4 and Corollaries 2.1-2.6 remain valid 
for multioutput multilayer classes Cr’(S) approxi- 
mating functions in Cr.” and M',", with p,, and P,, re- 
placed as in Corollary 2.6, provided 1 2 2. cl 

Thus. Xiv5 networks are universal approximators 
of vector valued functions. 

We remark that any implementation of a IX;,’ 
network is also a universal approximator as it con- 
tains the Y.:;.” networks as a special case. We avoid 
explicit consideration of these because of their no- 
tational complexity. 

3. DISCUSSION AND 
CONCLUDING REMARKS 

The results of Section 2 establish that standard mul- 
tilayer feedforward networks are capable of approx- 
imating any measurable function to any desired de- 
gree of accuracy, in a very specific and satisfying 
sense. We have thus established that such “mapping” 
networks are universal approximators. This implies 
that any lack of success in applications must arise 
from inadequate learning, insufficient numbers of 
hidden units or the lack of a deterministic relation- 
ship between input and target. 

The results given here also provide a fundamental 
basis for rigorously establishing the ability of mul- 
tilayer feedforward networks to learn (i.e., to esti- 
mate consistently) the connection strengths that 
achieve the approximations proven here to be pos- 
sible. A statistical technique introduced by Gren- 
ander (1981) called the “method of sieves” is par- 
ticularly well suited to this task. White (1988b) 
establishes such results for learning, using results of 
White and Woolridge (in press). For this it is nec- 
essary to utilize the concept of metric entropy (Kol- 
mogorov & Tinomirov, 1961) for subsets of C’ pos- 
sessing fixed numbers of hidden units. As a natural 
by-product of the metric entropy results one obtains 
quite specific rates at which the number of hidden 
units may grow as the number of training instances 
increases, while still ensuring the statistical property 
of consistency (i.e., avoiding overfitting). 

An important related area for further research is 
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the investigation of the rate at which approximations 
using XII or C networks improve as the number of 
hidden units increases (the “degree of approxima- 
tion”) when the dimension r of the input space is 
held fixed. Such results will support rate of conver- 
gence results for learning via sieve estimation in mul- 
tilayer feedfonvard networks based on the recent 
approach of Severini and Wong (1987). 

Another important area for further investigation 
that we have neglected completely and that is beyond 
the scope of our work here is the rate at which the 
number of hidden units needed to attain a given ac- 
curacy of approximation must grow as the dimension 
r of the input space increases. Investigation of this 
“scaling up” problem may also be facilitated by con- 
sideration of the metric entropy of XII’,” and Xr,,. 

The results given here are clearly only one step 
in a rigorous general investigation of the capabilities 
and properties of multilayer feedforward networks. 
Nevertheless, they provide an essential and previ- 
ously unavailable theoretical foundation establishing 
that the successes realized to date by such networks 
in applications are not just flukes, but are instead a 
reflection of the general universal approximation ca- 
pabilities of multilayer feedforward networks. 

Note added in proof: The authors regret being un- 
aware of the closely related work by Funahashi (this 
journal, volume 2, pp. 183-192) at the time the re- 
vision of this article was submitted. Our Theorem 
2.4 and Corollary 2.7 somewhat extend Funahashi’s 
Theorems 1 and 2 by permitting non-continuous ac- 
tivation functions. 

MATHEMATlCAL APPENDIX 

Because of the central role played by the Stone-Weierstrass theo- 
rem in obtaining our results, we state it here. Recall that a family 
A of real functions defined on a set E is an algebra if A is closed 
under addition, multiplication, and scalar multiplication. A family 
A separates points on E if for every x, y in E, x f y, there exists 
a function f in A such that f(x) f f(y). The family A vanishes 
at no point of E if for each x in E there exists f in A such that 
ii’;‘)” 0. (For further background, see Rudin, 1964, pp. 146- 

Stone-Weierstra5s Theorem 

Let A be an algebra of real continuous functions on a compact 
set K. If A separates points on K and if A vanishes at no point 
of K, then the uniform closure B of A consists of all real contin- 
uous functions on K (i.e., A is px-dense in the space of real 
continuous functions on K). 

Proof of TBeonm 2.1 

We apply the Stone-Weieratrass Theorem. Let K C R’ be any 
compact set. For any G, ZIP(G) is obviously an algebra on K. If 
X, y E K, x # y, then there is an A E A’ such that G(A(x)) # 
G(A(y)). To see this, pick a, b E R, a f b such that G(a) Z 
G(b). Pick A(.) to satisfy A(x) = a, A(y) = b. Then G(A(x)) 
# G(A(y)). This ensures that UP(G) is separating on K. 

Second, there are G(A(.))‘s that are constant and not equal 
to zero. To see this, pick b E R such that G(b) # 0 and 
set A(x) = 0 . x + b. For all x E K, G(A(x)) = G(b). This 
ensures that ZIP(G) vanishes at no point of K. 

The Stone-Weierstrass Theorem thus implies that Xl’(G) is 
pK-dense in the space of real continuous functions on K. Because 
K is arbitrary, the result follows. -1 .J 

Proof of Lemma 2.1 

(a) e (b): Immediate. 
(b) -+ (c): If p{x:lf,(x) - f(x)1 > c/2) +. c/2 then J min(]f.(w) 

- f(x)l, 1)&3.X) < E/2 + &/2 = E. 
(c) + (b): This follows from Chebyshev‘s inequality. [J 

Proof of Lemma 2.2 

Pick an E > 0. By Lemma 2.1 it is sufficient to find N E iV such 
that for all n Z= N we have J min{fJx) - f(x), 1) ,@x) < E. 
Without loss of generality, we suppose p(R) = 1. Because R’ is 
a locally compact metric space, p is a regular measure (e.g., Hal- 
mos, 1974, 52.G, p. 228). Thus there is a compact subset K of R 
with p(K) > 1 - d2. Pick N such that for all n 3 N supzeKlf,(x) 
- f(x) < e/2. Now IRr-X minflf.(x) - f(x)l, 11 I + 
JX min{lfJx) - f(x)/ 1) I < e/2 + e/2 = c for all n > N. 

Lemma A.1. For any finite measure ,u C’ is p,,-dense in M’. 

Proof 

Pick an arbitrary f E M’ and E > 0. We must find a g E C” such 
that p,,(f, g) < E. For sufficiently large M, I miniif . l~if,<~f - 
fl, l}& < e/2. By Halmos (1974, Theorems 55.C and D, p. 241- 
242). there is a continuous g such that J \f 1 I,:~I~~) - gjdp < 
e/2. Thus J min{]f - g], l}dp < E. 0 

Proof of Theorem 2.2 

Given any continuous nonconstant function, it follows from Theo- 
rem 2.1 and Lemma 2.2 that ZIP(G) is p&enae in C’. Because 
c’ is p,-dense in M’ by Lemma A. 1, it foliows rhat I;ll’(G) is p”- 
dense in M’ (apply the triangle inequality). q 

The extension from continuous to arbitrary squashing func- 
tions uses the following lemma. 

Lemma A.2. Let F be a continuous squashing function and Y an 
arbitrary squashing function. For every E > 0 there is an element 
H, of Z’(Y) such that sup,,,~F(~) - H,(I)\ < E. 

Proof 

Pick an arbitrary E > 0. Without loss of generality, take e < 1 
also. We must find a finite collection of constants, A, and affine 
functions A,, j E {1,2, . . Q - 1) such that supiER(F(l) - 
Zp;;’ /!$Y(A#))l < E. 

Pick Q such that l/Q < e/2. For j E {l, . , Q - 1) set 
,9, = l/Q. Pick M > 0 such that Y( -M) < c12Q and Y(M) > 
1 - cf2Q. Because Y is a sqaahing function such an M can 
be found. For j E {l, . , Q - 1) set r, = sup&? F(1) = j/Q}. 
Set rc = sup(l:F(I) = 1 - li2Q). Because F is a continuous 
squashing function such r,‘s exist. 

For any r < s let A,,, E A’ be the unique affine func- 
tion satisfying A,,,(r) = M and A,,,(s) = -M. The desired ap- 
proxirnation is then H,(1) = Z’p-;’ &Y(A,,,+,(A)). It is easy to 
check that on each of the intervals (-m, ri], (r,, r2]: . 
(TV-19 ra17 (I@ + JO) we have IF(n) - K(A)1 < E. 0 

Prod of Theorem 2.3 

By Lemma 2.2 and Theorem 2.2, it is s#ic@nt to show that 
UP(Y) is uniformly dense on companta & r;t%( PI)-forsome con- 
tinuous squashing function F. TO ah~ thh+, k is Mfit%ent to shoov 
that every fun&on of the form II&F{&(*)) c%n be uniformly 
approximated by members of XII’(*). 

Pick an arbitrary E > 0. Recauae muU@ation is continuous 
and [O,l)l is compact there is a S > 0 such that jar, - b,l < 6 for 
0 e a&, b, =s 1, k E {l, . . , I}implies (IIi,,u, - II!+,,bt( < E. 

By Lemma A.2 there is a function H6(.) = 2;, /$Y(A!(.)) 
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such that sup,,,lF(L) - H,,(i.)l < 6. It follows that 

suplt,~ fi F&(x)) - fi &(A&)) < E. 
i=I Ir=l 

Because Aj(A,(.)) E A’, we see that H:=,ff,(A,(,)) E Xnr(ul). 
Thus rl:=,F(A,,(J) can be uniformly approximated by ele- 

ments of ZII’(Y). El 
The proof of Theorem 2.4 makes use of the following three 

lemmas. 

Lemma A.3. For every squashing function Y, every c > 0. and 
every M > 0 there is a function COST,, E H’(Y) such that 

sup,,I ,M +M,ICOs~,,(;I) - cos(i.)) < I: 

Proof 

Let F be the cosine squasher of Gallant and White (1988) (the 
third example of squashing functions in Section 2). By adding, 
subtracting and scaling a finite number of affinely shifted versions 
of F we can get the cosine function on any interval [-M, + M]. 
The result now follows from Lemma A.2 and the triangle 
inequality. 0 

Lemma A.4. Let g(,) = Z$, b, cos(A,(.)), A, E A’. For arbitrary 
squashing function Y. for arbitrary compact K C R’, and for 
arbitrary c > 0 there is an f E C’(Y) such that sup,,Kig(x) - 
f(x)1 < c. 

Proof 

PickM>OsuchthatforjE{l,...,Q}A,(K)C[-M.+M]. 
Because Q is finite, K is compact and the A,(.) are continuous, 
such an M can be found. Let Q’ = Q Z,%,&l. By Lemma A. 3 
for all x E K we have IC$, lj; co~~,,;(,,(A,(x)) - g(x)1 < c. Because 
cosu. v, E C’(Y), we see that f(.) = C,?, cos+,, u,(A,(,)) E 

Z’(V). 0 

Lemma A.5. For every squashing function Y H’(Y) is uniformly 
dense on compacta in C’. 

Proof 

By Theorem 2.1 the trigonometric 
cos (A,,(,)):Q, 1, E N. b, E R, A,k E A 
compacta in C’. Repeatedly applying the trigonometric identity 
(cos a) (cos b) = cos(a + b) - cos (a - b) allows us to rewrite 
every trigonometric polynomial in the form XL, a, cos(A,(.)) where 
a, E R and A, E A’. The result now follows from Lemma A.4. 

0 

Proof of Theorem 2.4 

By Lemma A.5, E’(Y) is uniformly dense on compacta in C’. 
Thus Lemma 2.2 implies that Zr(Y) is p,,-dense in C’. The triangle 
inequality and Lemma A.1 imply that Z’(Y) is p,,-dense in M’. 

n 

Proof of Corollary 2.1 

Fix c > 0. By Lusin’s Theorem (Halmos, 1974, p. 242-243) there 
is a compact set K’ such that p(K)) > 1 - c/2 and g/ K’ (g restricted 
to K’) is continuous on K’. By the Tietze extension theorem 
(Dugundji, 1966, Theorem 5.1) there is a continuous function g’ 
E C’ such that g’/K’ = g/K’ and suprERr g’(x) = suprtr;l g( K’(x). 
By Lemma AS, H,(Y) is uniformly dense on compacta in C’. 
Pick compact K* such that p(KL) > 1 - c/2. Take f E H’(Y) such 
that sup,,,zlf(x) - g’(x)1 < E. Then SU~,~~I~~S(~(X) - g(x)/ < c 
andb(K’ 0 K’) > 1 - E. q 

Proof of Corollary 2.2 

Pick arbitrary g E L, and arbitrary E > 0. We must show the 
existence of a function f E E’(Y) such that p,(f, g) < E. 

It follows from standard theorems (Halmos, 1974, Theorems 
55.C and 55.D) that for every bounded function h E L, there is 
a continuous f’ such that p,(h, f’) < ~13. For sufficiently large 
M E R. setting h = gll,,,M1 gives p,(g, h) < +3. Because Z’(Y) 

is uniformly dense on compacta, there is an f E C’(Y) such that 
sup&(x) - f’(x)lr < (E/~)P. Because p(K) = 1 by hypothesis 
we have p,(f’. f) c c/3. Thus p,,(g, f) 6 /+,(g. h) + p,(h. f’) + 
p&f’, f) < E/3 + E/3 + E/3 = E. c 

Proof of Corollary 2.3 

Note that [O. 11’ is compact and apply Corollary 2.2. 0 

Proof of Corollary 2.4 

Let c = min{&):&) > 0). For all c < c we have that p,(f, g) = 
I: implies ~{x: If(x) - g(x)/ > E} = 0. Appealing to Theorem 2.4 
finishes the proof. 0 

Proof of Corollary 2.5 

Put mass 112’ on each point in {O. lp and apply Corollary 2.4.0 

Proof of Theorem 2.5 

There are two steps to this theorem. First, its validity is demon- 
strated when {x,, x,} C RI, then the result is extended to R’. 

Step 1: Suppose {x,. ,A-,,} C R’ and. relabelling if necessary, 
that x, < x2 CC <x, ,<x,.PickM>OsuchthatY(-M) = 
1 - Y(M) = 0. Define A, as the constant affine function A, = 
M,, and set p, = g(x,). Set f’(x) = 8, . P(A,(x)). Because f’(x) = 
g(x,) we have f”(x,) = g(x,). Inductively define Aa by A&c_,) = 
-M and Ai = M. Define ,$ = g(xi.) - g(xi;. ,). 

Set f^(x) = C:=, P,T(A,(x)). For i 6 k f”(q) = g(q). f” is the 
desired function. 

Step 2: Suppose (xi, , x,} C R’ where r 3 2. Pick p E R’ 
such that if i # j then p (x, - x,) f 0. This can be done since 
U,+,{q:q . (x, - x,) = 0} is a finite union of hyperplanes in R’. 
Relabelling, if necessary, we can assume that p xl < p . x2 C 
.‘. < p x,. As in the first step find ,!$‘s and A,‘s such that 
C;=, ,$WA,(p x0) = g(x,). Then f(x) = C;=, P,Y(A,(p x)1 
is the desired function. 0 

Proof of Corollary 2.6 

Using vectors /J which are 0 except in the ith position we can 
approximate each g, to within E/S. Adding together 6 approxi- 
mations keeps us within the classes ZIIr ( and Z’,‘. 0 

The proof of Corollary 2.7 uses the following lemma. 

Lemma A.6. Let F (resp. G) be a class of functions from R to R 
(resp. R’ to R) that is uniformly dense on compacta in C’ (resp. 
C’). The class of functions G o F = {f o g: g E G and f E F} is 
uniformly dense on compacta in c’. 

Proof 

Pick an arbitrary h E C’. compact subset K of R’, and E > 0. We 
must show the existence of an f E F and a g E G such that 
sup&f(g(x)) - h(x)1 < E. 

By hypothesis there is a g E G such that sup,Jg(x) - 
h(x)1 < ~12. Because K is compact and h is continuous {h(x): x 
E K}iscompact. Thus{g(x):xE K}is bounded. LetSbe the neces- 
sarily compact closure of {g(x): x E K}. 

By hypothesis there is an f E F such that sup,,,)f(s) - s/ < 
c/2. We see that f o g is the desired function, as 

supJf(g(x)) - h(x)/ c supJf(&)) - g(x) + g(x) - WI 
s swdfM4) - &)I + w&(4 - WI 

< E/2 + E/2 = E. 0 

Proof of Corollary 2.7 

We consider only the case where s = 1. When s 3 2 apply Cor- 
ollary 2.6. It is sufficient to show that for every k the class of 
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functions 

is uniformly dense on compacta in C’. 
Lemma A.5 proves that this is true when k = 1. Induction on 

k will complete the proof. 
Suppose Jk is uniformly dense on compacta in C’. We must 

show that J1+, is uniformly dense on compacta in c’, Jx+, = 
{Xt&V(A,(g,(x))):gi E Jk}. Lemma A.5 says that the class of func- 
tions {&!$‘Zr(Aj(.)))} is uniformly dense on compacta in C’. Lemmr; 
A.6 and the induction hypothesis complete the proof. __I 
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